Indicatori di ripartenze (parte seconda)

In questa seconda parte applicheremo le tecniche introdotte nella prima parte del post alla seconda ondata del contagio.

Il grafico qui sopra mostra l’evoluzione del contagio (nuovi casi giornalieri) in Italia a partire dal 1 Ottobre 2020 fino ad oggi. 

È subito evidente che l’andamento negli ultimi 8 mesi è molto più complesso del periodo precedente: almeno 4 ondate si sono susseguite in questo periodo.  Per descrivere l’andamento dei nuovi casi giornalieri utilizziamo la somma di 4 funzioni di Gompertz (una per ogni ondata).  Nel grafico sono riportate le singole curve tratteggiate (curve G1, G2, G3, G4), mentre la loro somma è la curva continua arancione (G1+G2+G3+G4),  infine in grigio è riportata la media mobile a 7 giorni, per confronto.

Come abbiamo discusso nel dettaglio nel post “Quanto vale(va) un rosso”, questo andamento a ondate multiple è dovuto al fatto che le misure restrittive non sono state costanti nel tempo e sono state applicate in tempi diversi nelle varie regioni. La decrescita finale è sostanzialmente dovuta all’effetto delle vaccinazioni , che hanno  rapidamente smorzato la ripartenza rappresentata dalla quarta Gompertz (G4).

Per segnalare eventuali ripartenze fermiamo quindi l’interpolazione dei dati all’11 maggio (data alla quale l’interpolazione  si stabilizza, incorporando la curva G4) e monitoriamo eventuali discostamenti dall’estrapolazione.

Nel sito aggiorniamo quotidianamente l’andamento del contagio (qui il link) e l’andamento dei residui (in questa pagina web) che riportiamo qui sotto.

Come si può facilmente osservare, per il momento, fortunatamente, non sono visibili accenni di ripartenza del contagio.

È possibile controllare lo stesso andamento nelle singole regioni selezionando il menu “Grafici”, la regione desiderata in “Regioni” e poi “Dati=Positivi” e “Positivi=Deviazione”, come mostrato qui sotto. Anche  a livello regionale non sono visibili indicazioni di ripartenze.

Possiamo ripetere lo stesso esercizio per i dati del Regno Unito, di cui abbiamo discusso in questo post.

Il grafico qui sopra mostra l’andamento del contagio nella seconda ondata, abbiamo interpolato i dati con 4 Gompertz fino alla data del 20 Aprile.

I residui ((dati-fit)/errore dei dati), riportati nel grafico sottostante, mostrano che i dati hanno cominciato a discostarsi dal fit a partire dall’inizio di maggio:  al 26 di maggio avevano superato la soglia di allarme di due deviazioni standard, mentre i media hanno cominciato a segnalare la ripartenza in UK solo verso il 10 giugno…

Indicatori di ripartenze (parte prima)

Nella fase di decrescita dei contagi è senz’altro interessante, nella speranza di non vedere alcun risultato, costruire degli indicatori che permettano di segnalare una possibile ripartenza del contagio. In questo post illustreremo una tecnica che abbiamo già utilizzato con successo durante la prima ondata.

Abbiamo illustrato, in post  precedenti (Rt nelle Province, Rt nelle Regioni,I dati su cui viene calcolato Rt, Un mistero svelato, Una fotografia precisa, Inferenza Bayesiana, Quanto Valeva un Rosso), numerose caratteristiche dell’indicatore Rt che è anche molto efficace nell’ indicare la ripartenza o lo spegnimento del contagio (qui le nostre pagine su Rt nazionale, Rt nelle regioni e Rt nelle province e nel mondo).

In questo post descriveremo invece dei metodi specificatamente costruiti per seguire la ripartenza dopo la prima ondata, in un secondo post descriveremo come questi metodi possono essere applicati alla situazione attuale.

Il grafico qui sopra, aggiornato quotidianamente sul nostro sito nella primavera-estate dell’anno scorso, mostra l’andamento del contagio in Italia durante la primavera 2020 e la interpolazione dei dati con 5 diverse curve asimmetriche (ovvero con la velocità di discesa diversa da quella di salita, per confronto è riportata anche  una gaussiana simmetrica). Le curve erano interpolate utilizzando i  dati fino al 4 maggio 2020, data in cui il primo lockdown è stato rilasciato, e successivamente sono state estrapolate per capire se i dati giornalieri rimanevano in accordo con l’andamento  del contagio durante il lockdown. La convoluzione delle 5 curve definisce una sorta di regione di accettanza entro cui i dati sarebbero dovuti rimanere se l’andamento del contagio fosse rimasto quello previsto.

In questo modo è stato possibile fare una previsione sul valore dei contagi al 18 maggio (effettuata il 4 maggio), sulla data di raggiungimento di 200 casi quotidiani, ed è stato possibile visualizzare che a partire da circa l’1 luglio 2020 i dati hanno cominciato a discostarsi dalla banda di previsione (e quindi l’andamento durante il lockdown è stato mantenuto per circa due mesi dopo le riaperture, dal 4 maggio ai primi di luglio).

Vale la pena di sottolineare come una singola curva sia in grado di rappresentare in modo soddisfacente l’andamento dei dati dall’inizio del contagio fino ai primi di luglio: un periodo di oltre cinque mesi. Nel caso della Gompertz sono quindi sufficienti tre soli parametri per descrivere il contagio in questo periodo di tempo. D’altra parte tutto questo funziona finchè non intervengono fatti nuovi a modificare l’andamento del contagio. Cambiamenti che questo metodo non è in grado di prevedere, come  non è in grado di prevedere  cosa possa succedere  una volta che il contagio si sia discostato dall’andamento previsto dalla curva.

Nel plot sottostante invece di riportare le curve interpolanti sovrapposte ai dati, viene riportata la distanza dei nuovi casi giornalieri dalle previsioni di due curve, le derivate della Gompertz e della Logistica generalizzata. La distanza è divisa per l’errore del dato, calcolato tenendo conto degli errori statistici (poissoniani) e sistematici (dispersione dei dati dovuta ad esempio al minor numero di tamponi durante i weekend).

 

Il grafico riporta quindi una zona verde e una zona gialla che corrispondono alle bande di errori corrispondenti a 1 sigma e 2 sigma (67% e  95% di livello di confidenza). Questa rappresentazione è molto più efficace nel mostrare che i dati hanno cominciato a discostarsi dalle previsioni a partire circa dal 1 Luglio e che già all’inizio di Agosto erano inconciliabili con l’andamento durante il lockdown.

Questa ripartenza non ha destato grandi preoccupazioni a livello generale perchè la risalita estiva non è stata violenta. Il regime esponenziale con tempi di raddoppio inferiori ai 10 giorni ha cominciato a manifestarsi a partire dal 1 Ottobre, generando la cosidetta seconda ondata.

Il grafico qui sotto mostra l’andamento del contagio fino al 1 Ottobre 2020 (la curva sovraimposta è la media mobile a 7 giorni). Cosa è successo nella seconda ondata è argomento della seconda parte di questo post.

 

Quanto vale(va) un rosso?

 

Abbiamo valutato  quale valore di Rt tendenziale producevano le misure restrittive chiamate “giallo”, “arancione” e “rosso” entrate in vigore nelle regioni italiane dal 6 Novembre 2020.

Il risultato finale è riportato nel grafico qui sopra: i quadratini indicano l’Rt tendenziale in 9 regioni italiane (le più popolose) e nella loro combinazione (chiamata un po’ impropriamente Italia).

Si nota per esempio che in media in Italia le misure restrittive gialle producevano un Rt pari a 1.09, le arancioni Rt=0.97 e le rosse Rt=0.86.

Considerando che solo i valori di Rt minori di 1 producono un contenimento del contagio, risulta che le misure gialle erano inadeguate al contenimento, le arancioni erano pericolosamente vicine al valore critico Rt=1 e solo le misure rosse garantivano un contenimento del contagio. Questo fino al 26 aprile 2021, successivamente il progressivo aumento delle persone vaccinate ha procurato un deciso miglioramento del contenimento del contagio. Dal grafico si nota anche che le diverse regioni italiane avevano risposte diverse alle stesse misure restrittive.

La procedura intrapresa per ottenere questo risultato è riportata nell’articolo “Study on the e ffects of the restrictive measures for containment of the COVID-19 pandemic on the reproduction number Rt in Italian regions” che abbiamo sottomesso a pubblicazione: https://arxiv.org/abs/2106.02603

A grandi linee la procedura è la seguente:

Siamo partiti dalla definizione delle misure restrittive nelle regioni italiane dal 6 Novembre 2020 al 26 Aprile 2021:

abbiamo selezionato le 9 regioni italiane con più di 3 milioni di abitanti (per poter calcolare Rt con minori fluttuazioni statistiche) e abbiamo seguito l’andamento di Rt nei periodi in cui le misure restrittive rimanevano costanti nelle regioni.

Sono stati introdotti tre diversi modelli per riprodurre l’andamento di Rt, il modello che riproduce meglio i dati introduce un valore tendenziale di Rt per ognuna delle tre misure restrittive. Per poter seguire correttamente l’andamento di Rt abbiamo dovuto calcolare il ritardo con cui un cambiamento di misure restrittive produce cambiamenti rivelabili, questo ritardo risulta essere pari complessivamente a 15 giorni.

Nella figura sottostante riportiamo l’andamento di Rt nelle 9 regioni considerate, rappresentati da pallini colorati in giallo, arancione e rosso in accordo con le misure restrittive adottate, tenuto conto del ritardo che abbiamo misurato. Nei plot le linee continue azzurre riportano i valori stimati dal nostro modello (ad ogni cambio di colore il valore stimato di Rt viene definito uguale al valore misurato).

Da questi plot si può osservare che i cambiamenti delle misure restrittive non erano sempre coerenti con l’andamento del contagio. Si nota anche che spesso a misure restrittive costanti l’andamento di Rt rimaneva costante (si veda per esempio la Campania dal 20 Gennaio 2021 al 1 Marzo 2021). Infine il nostro modello non è in grado di riprodurre correttamente tutti gli andamenti di Rt. Va tuttavia considerato che il nostro obiettivo era misurare la tendenza di Rt prodotta dalle misure restrittive, e non abbiamo considerato molti altri fattori che influiscono sull’andamento del contagio, quali le misure di tracciamento e screening dei contagi con i tamponi, la gestione delle chiusure delle scuole nelle diverse regioni, tutte le ulteriori misure restrittive introdotte nelle singole regioni in base a decisioni locali, la diversa mobilita’ nelle varie regioni e gli effetti dei vaccini e delle varianti.

A partire da gennaio 2021 sono cominciate le vaccinazioni sul territorio italiano e si e’ diffusa la variante inglese del virus. Questi due importanti effetti in linea di principio dovrebbero avere effetti opposti sull’efficacia delle misure restrittive. Al 26 Aprile 2021 circa il 20% della popolazione italiana aveva ricevuto almeno la prima dose del vaccino, mentre la variante inglese rappresentava piu’ del 90% dei contagi.

Per valutare l’effetto combinato dei vaccini e della variante abbiamo  calcolato i valori tendenziali di Rt in due periodi di tempo distinti: prima e dopo il 15 Gennaio 2021.

Quello che abbiamo osservato è che l’effetto combinato dei vaccini e delle varianti è stato un  peggioramento dell’efficacia delle misure restrittive dopo il 15 gennaio, valutato in circa il 15% in termini di Rt tendenziale.

Fortunatamente dopo il 26 aprile la variante inglese non poteva fare danni ulteriori, avendo già raggiunto praticamente il 100% dei contagiati, mentre i vaccinati  sono diventanti sempre più numerosi, procurando il vistoso miglioramento dell’andamento dei contagi osservato dalla fine di aprile ad oggi.

Davvero la mortalità in Italia per Covid-19 è la peggiore del mondo?

 

(Quick answer: no, con le opportune correzioni siamo al 20mo posto fra le 42 nazioni con più casi di Covid-19 al mondo)

La mortalità è definita come decessi per Covid-19 divisi per la popolazione totale.
A prima vista l’Italia è fra le peggiori nazioni al mondo, come risulta dal grafico sottostante dove riportiamo la mortalità in funzione dei casi totali per 100000 abitanti per le 42 nazioni con più casi di Covid-19 al mondo.

Continua a leggere